\(\int \frac {x^3}{\log ^2(c (a+b x^2))} \, dx\) [125]

   Optimal result
   Rubi [A] (verified)
   Mathematica [F]
   Maple [A] (verified)
   Fricas [A] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [A] (verification not implemented)
   Mupad [F(-1)]

Optimal result

Integrand size = 16, antiderivative size = 71 \[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\frac {\operatorname {ExpIntegralEi}\left (2 \log \left (c \left (a+b x^2\right )\right )\right )}{b^2 c^2}-\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}-\frac {a \operatorname {LogIntegral}\left (c \left (a+b x^2\right )\right )}{2 b^2 c} \]

[Out]

Ei(2*ln(c*(b*x^2+a)))/b^2/c^2-1/2*a*Li(c*(b*x^2+a))/b^2/c-1/2*x^2*(b*x^2+a)/b/ln(c*(b*x^2+a))

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 71, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.500, Rules used = {2504, 2447, 2446, 2436, 2335, 2437, 2346, 2209} \[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\frac {\operatorname {ExpIntegralEi}\left (2 \log \left (c \left (b x^2+a\right )\right )\right )}{b^2 c^2}-\frac {a \operatorname {LogIntegral}\left (c \left (b x^2+a\right )\right )}{2 b^2 c}-\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )} \]

[In]

Int[x^3/Log[c*(a + b*x^2)]^2,x]

[Out]

ExpIntegralEi[2*Log[c*(a + b*x^2)]]/(b^2*c^2) - (x^2*(a + b*x^2))/(2*b*Log[c*(a + b*x^2)]) - (a*LogIntegral[c*
(a + b*x^2)])/(2*b^2*c)

Rule 2209

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - c*(f/d)))/d)*ExpInteg
ralEi[f*g*(c + d*x)*(Log[F]/d)], x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !TrueQ[$UseGamma]

Rule 2335

Int[Log[(c_.)*(x_)]^(-1), x_Symbol] :> Simp[LogIntegral[c*x]/c, x] /; FreeQ[c, x]

Rule 2346

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2436

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2437

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[(f*(x/d))^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2446

Int[((f_.) + (g_.)*(x_))^(q_.)/((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.)), x_Symbol] :> Int[ExpandIn
tegrand[(f + g*x)^q/(a + b*Log[c*(d + e*x)^n]), x], x] /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
 0] && IGtQ[q, 0]

Rule 2447

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[(d
 + e*x)*(f + g*x)^q*((a + b*Log[c*(d + e*x)^n])^(p + 1)/(b*e*n*(p + 1))), x] + (-Dist[(q + 1)/(b*n*(p + 1)), I
nt[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x] + Dist[q*((e*f - d*g)/(b*e*n*(p + 1))), Int[(f + g*x
)^(q - 1)*(a + b*Log[c*(d + e*x)^n])^(p + 1), x], x]) /; FreeQ[{a, b, c, d, e, f, g, n}, x] && NeQ[e*f - d*g,
0] && LtQ[p, -1] && GtQ[q, 0]

Rule 2504

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_)^(n_))^(p_.)]*(b_.))^(q_.)*(x_)^(m_.), x_Symbol] :> Dist[1/n, Subst[I
nt[x^(Simplify[(m + 1)/n] - 1)*(a + b*Log[c*(d + e*x)^p])^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, e, m, n, p,
 q}, x] && IntegerQ[Simplify[(m + 1)/n]] && (GtQ[(m + 1)/n, 0] || IGtQ[q, 0]) &&  !(EqQ[q, 1] && ILtQ[n, 0] &&
 IGtQ[m, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {1}{2} \text {Subst}\left (\int \frac {x}{\log ^2(c (a+b x))} \, dx,x,x^2\right ) \\ & = -\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}+\frac {a \text {Subst}\left (\int \frac {1}{\log (c (a+b x))} \, dx,x,x^2\right )}{2 b}+\text {Subst}\left (\int \frac {x}{\log (c (a+b x))} \, dx,x,x^2\right ) \\ & = -\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}+\frac {a \text {Subst}\left (\int \frac {1}{\log (c x)} \, dx,x,a+b x^2\right )}{2 b^2}+\text {Subst}\left (\int \left (-\frac {a}{b \log (c (a+b x))}+\frac {a+b x}{b \log (c (a+b x))}\right ) \, dx,x,x^2\right ) \\ & = -\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}+\frac {a \text {li}\left (c \left (a+b x^2\right )\right )}{2 b^2 c}+\frac {\text {Subst}\left (\int \frac {a+b x}{\log (c (a+b x))} \, dx,x,x^2\right )}{b}-\frac {a \text {Subst}\left (\int \frac {1}{\log (c (a+b x))} \, dx,x,x^2\right )}{b} \\ & = -\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}+\frac {a \text {li}\left (c \left (a+b x^2\right )\right )}{2 b^2 c}+\frac {\text {Subst}\left (\int \frac {x}{\log (c x)} \, dx,x,a+b x^2\right )}{b^2}-\frac {a \text {Subst}\left (\int \frac {1}{\log (c x)} \, dx,x,a+b x^2\right )}{b^2} \\ & = -\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}-\frac {a \text {li}\left (c \left (a+b x^2\right )\right )}{2 b^2 c}+\frac {\text {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log \left (c \left (a+b x^2\right )\right )\right )}{b^2 c^2} \\ & = \frac {\text {Ei}\left (2 \log \left (c \left (a+b x^2\right )\right )\right )}{b^2 c^2}-\frac {x^2 \left (a+b x^2\right )}{2 b \log \left (c \left (a+b x^2\right )\right )}-\frac {a \text {li}\left (c \left (a+b x^2\right )\right )}{2 b^2 c} \\ \end{align*}

Mathematica [F]

\[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx \]

[In]

Integrate[x^3/Log[c*(a + b*x^2)]^2,x]

[Out]

Integrate[x^3/Log[c*(a + b*x^2)]^2, x]

Maple [A] (verified)

Time = 2.01 (sec) , antiderivative size = 74, normalized size of antiderivative = 1.04

method result size
risch \(-\frac {x^{2} \left (b \,x^{2}+a \right )}{2 b \ln \left (c \left (b \,x^{2}+a \right )\right )}+\frac {a \,\operatorname {Ei}_{1}\left (-\ln \left (c \left (b \,x^{2}+a \right )\right )\right )}{2 c \,b^{2}}-\frac {\operatorname {Ei}_{1}\left (-2 \ln \left (c \left (b \,x^{2}+a \right )\right )\right )}{c^{2} b^{2}}\) \(74\)
default \(\frac {-\frac {c^{2} \left (b \,x^{2}+a \right )^{2}}{\ln \left (c \left (b \,x^{2}+a \right )\right )}-2 \,\operatorname {Ei}_{1}\left (-2 \ln \left (c \left (b \,x^{2}+a \right )\right )\right )-c a \left (-\frac {c \left (b \,x^{2}+a \right )}{\ln \left (c \left (b \,x^{2}+a \right )\right )}-\operatorname {Ei}_{1}\left (-\ln \left (c \left (b \,x^{2}+a \right )\right )\right )\right )}{2 c^{2} b^{2}}\) \(95\)

[In]

int(x^3/ln(c*(b*x^2+a))^2,x,method=_RETURNVERBOSE)

[Out]

-1/2*x^2*(b*x^2+a)/b/ln(c*(b*x^2+a))+1/2/c/b^2*a*Ei(1,-ln(c*(b*x^2+a)))-1/c^2/b^2*Ei(1,-2*ln(c*(b*x^2+a)))

Fricas [A] (verification not implemented)

none

Time = 0.28 (sec) , antiderivative size = 99, normalized size of antiderivative = 1.39 \[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=-\frac {b^{2} c^{2} x^{4} + a b c^{2} x^{2} + {\left (a c \operatorname {log\_integral}\left (b c x^{2} + a c\right ) - 2 \, \operatorname {log\_integral}\left (b^{2} c^{2} x^{4} + 2 \, a b c^{2} x^{2} + a^{2} c^{2}\right )\right )} \log \left (b c x^{2} + a c\right )}{2 \, b^{2} c^{2} \log \left (b c x^{2} + a c\right )} \]

[In]

integrate(x^3/log(c*(b*x^2+a))^2,x, algorithm="fricas")

[Out]

-1/2*(b^2*c^2*x^4 + a*b*c^2*x^2 + (a*c*log_integral(b*c*x^2 + a*c) - 2*log_integral(b^2*c^2*x^4 + 2*a*b*c^2*x^
2 + a^2*c^2))*log(b*c*x^2 + a*c))/(b^2*c^2*log(b*c*x^2 + a*c))

Sympy [F]

\[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\frac {- a x^{2} - b x^{4}}{2 b \log {\left (c \left (a + b x^{2}\right ) \right )}} + \frac {\int \frac {a x}{\log {\left (a c + b c x^{2} \right )}}\, dx + \int \frac {2 b x^{3}}{\log {\left (a c + b c x^{2} \right )}}\, dx}{b} \]

[In]

integrate(x**3/ln(c*(b*x**2+a))**2,x)

[Out]

(-a*x**2 - b*x**4)/(2*b*log(c*(a + b*x**2))) + (Integral(a*x/log(a*c + b*c*x**2), x) + Integral(2*b*x**3/log(a
*c + b*c*x**2), x))/b

Maxima [F]

\[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\int { \frac {x^{3}}{\log \left ({\left (b x^{2} + a\right )} c\right )^{2}} \,d x } \]

[In]

integrate(x^3/log(c*(b*x^2+a))^2,x, algorithm="maxima")

[Out]

-1/2*(b*x^4 + a*x^2)/(b*log(b*x^2 + a) + b*log(c)) + integrate((2*b*x^3 + a*x)/(b*log(b*x^2 + a) + b*log(c)),
x)

Giac [A] (verification not implemented)

none

Time = 0.30 (sec) , antiderivative size = 100, normalized size of antiderivative = 1.41 \[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\frac {a {\left (\frac {b c x^{2} + a c}{\log \left (b c x^{2} + a c\right )} - {\rm Ei}\left (\log \left (b c x^{2} + a c\right )\right )\right )}}{2 \, b^{2} c} - \frac {\frac {{\left (b c x^{2} + a c\right )}^{2}}{\log \left (b c x^{2} + a c\right )} - 2 \, {\rm Ei}\left (2 \, \log \left (b c x^{2} + a c\right )\right )}{2 \, b^{2} c^{2}} \]

[In]

integrate(x^3/log(c*(b*x^2+a))^2,x, algorithm="giac")

[Out]

1/2*a*((b*c*x^2 + a*c)/log(b*c*x^2 + a*c) - Ei(log(b*c*x^2 + a*c)))/(b^2*c) - 1/2*((b*c*x^2 + a*c)^2/log(b*c*x
^2 + a*c) - 2*Ei(2*log(b*c*x^2 + a*c)))/(b^2*c^2)

Mupad [F(-1)]

Timed out. \[ \int \frac {x^3}{\log ^2\left (c \left (a+b x^2\right )\right )} \, dx=\int \frac {x^3}{{\ln \left (c\,\left (b\,x^2+a\right )\right )}^2} \,d x \]

[In]

int(x^3/log(c*(a + b*x^2))^2,x)

[Out]

int(x^3/log(c*(a + b*x^2))^2, x)